STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S.A.

January 1972

A CAUSALITY REPRESENTATION FOR
ENRICHED ROBOT TASK DOMAINS

by

Peter E. Hart
Nils J., Nilsson
Ann E. Robinson

Artificial Intelligence Center

Technical Note 62

SRI Project 1187

The research reported herein was sponsored by the Office of Naval
Research under Contract N00014-71-C-0294 and NR-348-028,

Reprinted from Technical Report dated December 1971 to Office of
Naval Research, Contract N00014-71-C-0294 (AD 734 140).

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1972 2. REPORT TYPE 00-00-1972 to 00-00-1972
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Causality Representation for Enriched Robot Task Domains £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,M enlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Existing robot projectsin thefield of artificial intelligence have concentrated on-tasks wherein therobot
must excite an action in order to change the current state of its environment. In thisreport we consider
other families of tasks, such asthose involving the inhibition of an action or the maintenance of the current
state of itsenvironment. In particular, we propose a representation for knowledge that a robot would need
if it isto solve problems from such task domains.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 15
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSBTRACT

Existing robot projects in the field of artificial intelligence
have concentrated on tasks whersin the robot must excife an action
in order ito change the current stete of its environment. In this
report we consider other families of tasks, such ag those involving
the inhibition of an sction or the maintenance of the current state of
its environment, In particular, we propose a representation for knowledge

that a robot would need if it is to solve problems from such task domains.

ii

I INTRODUCTION

The goal of the research desgribed in this report is to propose
and to investigate possible learning strategies for robot control.
Such stfategies would construct and execute complex sequences of behav-
iot in dynamically changing environments. The present work is;closely
related to much of the research on intelligent robots being carried out
here at Stanfdrd Research Institute and at other Artificial Intelligence
centers in this country and abroad., The usual robot work, however, has
focused on one special class of tasks: namely, tasks involving the
execution of an action or a series of actions. We might call these

tasks excitatory change tasks, since the robot must excite an action to

change the current state of affairs. In our present work we consider
many additional families of robot tasks, and we suggest a representation
for the information a robot must have for successfully accomplishing tasks

in all of these families.

II MODES OF CAUSALITY

A, Typical Mammalian Behavior

To motivate our discussion, let us consider families of behavior
typically engaged in by humans as well as many lower animals. Among
the families of behavior are the following:

(1) An organism will take a positive action to get a reward,

such as pushing a lever to get food. A general term for

this is excitatory reward, indicating that an action is

excited in order to get a reward.

(2) A second type of behavior is to inhibit doing an action in
order to avoid some bad coﬁsequence of that action. An
example is not crossing a railroad track when a train is

coming. This is called inhibitory avoidance behavicr.

Notice that inhibitory behavior implies that the organism
has at least two concurrent goals calliﬁg for conflicting

gactions. In our present example, if the only gosal were to

avoid a train, then there would would be no reason ever to
cross a railroad track, and consequently never an action to
inhibit.

(3) Excitatory aveoidance is another type of behavior in which a

positive action is taken to avoid the occurrence of an event.
An example is jumping out of'fhe way of an oncoming car to
avoid getting hit.

(4) As a final example, organisms will take a positive action to
escape a bad situation. To go inside a shelter out of a
blizzard is to escape a storm, This is called excitatory

escape.

B. Modeling Causality

The types of behavior listed above indicate that there are other
families of robot tasks beside excitatofy change tasks. Let us now
systematically explore the possible families of robot tasks.

The basic elements in our discussion are variables named R, Q, and
a. R and Q are predicates about the state of some things in the world.
For the present, assume that fhe range of their values is [T,F]. When
we say that "R flips' we mean that it pgoes either from false to true, or
from true to false. We say that a is an action that can be taken in
the situation defined whenever Q has the proper value.

We can discuss the probability that action a will cause R to change
its truth value and also the probability that a will prevent R from
changing its value. There are four general cases to consider:

(L) Prob[Q-f R flips]: This probability, which we name p,

denotes the probability that action a, taken when Q has

the proper value, causes R to change its truth value.

For example, this is the probability that (a) if a person

is at the light switch (predicate Q) and (b) if he flips

the switch (action a), then (c) the light will change states
(predicate R). Note that, for now, we are not concerned
with whether the light was initially on or off-but only

that it will change.

(2) Proﬂ:Q-g - (R flips)]: ‘This denotes the probability that
action a, taken when Q has the proper value, prevents R
from changing. To continue our example, this is the
probability that the light will not change whén the light
switch is flipped. For the same Q, R, a, and p from (L),
the probability is 1 - p.

(3) Prob[Q= (R flips)]: This probability, which we name g,
denotes the probability thaf action a, not taken when Q
has the proper value, causes R to change. Using the same
example, this is the probability that not flipping the
light switch when the person is next to it will cause the
light to change states.

(4) Prob[Qtf-— (R flips)]: This denotes the probability that

action a, not taken when Q has the proper value, prevents

R from changing. Using our example, this is the probability
that not flipping the light switch when the person is next
to it will lead to the light not changing. This is exactly
the probability 1 - q.

Rewriting these four probabilities using the notation of conditional
probability, we can see that p and g are distinct probabilities because
they are conditioned on different events. It is also evident from the
four new formulas below that if p = q then whether R flips states is
independent'of the action a. The four formulas in our alternative
notation are:

(1) Prob[R flips l Q,al=mp

(2) Prob[- (R flips) | Qa] =1 - p

(3) Prob[R flips | Q-a] =q

(4) Prob[- (R flips) | Q,-2a] =1 - g

Note that we have not yet said whether predicate R is changing
from false to true or from true to false, nor have we said whether it

1ls initially false or true. These cases will be elaborated shortly.

C. Behavior Based on Causality

The -probabilities discussed above specify the effects on predicate
R of executing or not executing an action a in the presence of a second
predicate Q. Based on these probabilities, we can enumerate eight types
of behavior that a robot may engage in for the purpose of creating or
maintaining an acceptable world situation. These eight types are
obtained by considering three independent factors: (1) whether the
maximum of p and q is p or q; (2) whether we want to .change or maintain
the value of R; and (3) whether R is initially true or false. The
probabilities p and q can both range over the unit interval and so take
on an infinite number of possible values. We saw earlier that if p = q
thén the action is irrelevant; we will regard this as a degenerate case.
Whét is critically important is which of the p and q is greater, for this
-determines whether exciting or inhibiting an action is more likely to
affect R. For simplicity, we will say that when p is maximum, p =1
and q = 0, and when q is maximum p = 0 and q = 1. The eight cases are

given in Table 1,

Table 1
Change/Maintain Initial Value of R >
P q Predicate R Desired Value of R
Change F=+ T
T~ F
1 Y]
Maintain T T
F~ F
Change F- 7
T~ F
0 1
Maintain T T
F~F

III THE REPRESENTATION

To model a robot's total knowledge of causality,.we may construct
a net whose elementary components model the basic causality rules. To
simplify our discussion, we will assume that the robot can at all times
evaluate any predicate without having to perform information-acquiring
acts. This restriction is of course unrealistically severe, and its

relaxation constitutes an important subject of future research.

A, Primitives

We assume predicates and actions that are consistent, at least in
spirit, with the top-level primitive actions and predicates used in the
Stanford Research Institute robot system. A typical predicate might
specify the location of the robot or other objects in the environment,
whether a door is open, and so forth. A typical action might be GOTO(),
where the argument (i.e.,, the goal location of the robot) must be
specified by the top~level robot problem-solver. We might also envision
a set of "internal' predicates that tell the robot about its own state

of being: whether its batteries are charged, whether it needs repairs,

and so forth.

B. The Net Representation

We suggest a net representation of causality. The nodes of the net
correspond to predicates about the primitive stimuli in the world. Each
node has a ""false"” and a "true' side. Arrows whose tails are attached
to a particular side of a node correspond to the possible actions that
can be taken when the predicate has that value. Heads of arrows indicate
consequences of actions, as illustrated by the fbllowing example showing

all the possible connections for two nodes in the tree:

P
c F T b
d -
pc:qc pd,qd Pard, pqub
Q
F T

Each arrow from Q to P is labeled with an action and associated
probabilities p and g. For example, the arrow labeled with action a
above means that when Q is true and P is false then pa is the proba-
bility that action a will cause P to flip from false to true and qa
is the probability that not doing a will cause P to flip. If p_ = 1
and q, = 0 then P will always flip from false to true if a is done and
it will never flip if a is not done. Note that this does not mean that
nothing else will change P. It may be that there is some other way of
changing P, but the new way does not depend on Q. If q = 1 and pa =0
then when @ is true a will always prevent P from flipping from false to
true, but unless a is done P will flip. We can summarize this state of
affairs as follows: Given thaf Q is true, p, = 1 and a, = 0 means that
R flips if and only if action a is executed. Conversely, pa = 0 and
qa = 1 means that R flips if and only if action a is not executed. A
similar explanation holds for the other three arrows.

We use the term enabled to describe the arrows whose tails come
out of the side of the node corresponding to the current value of the
node. In the above example, if Q is true then arrows a and b are
enabled. Relevant arrows are those whose heads come into the side of
the node which corresponds to the current value of the predicate. If
P is true above, then arrows b and d are relevant.

Each node contains two kinds of information: the value of the
predicate and the urgency attached tc maintaining or changing that
value. The predicate values are written v(Pred) and lie on the
interval -1 = false to +1 = true. For now assume that there are only
two values, 1, and later we will see why they become analog.

The urgency of a node, u(Pred) alsc lies in the interval of +1
to -1. An urgency of +1 means that the predicate must be made or kept

true, and an urgency of -1 -means that the predicate must be made or

' The urgency of a node

kept false. An urgency of O means ''don't care.'
is a function of the urgency of its predecessor, the value of its pred-
ecessor, how probable it is that an action will change or prevent something
(the p and q values), and other factors such as the effort needed to take
the action.

The nodes described above are to be connected into a network from
which a robot computes its actions. At present, all of our networks
have been trees, and we do not know whether this will change. Figure 1

shows a simple illustrative network consisting of two subtrees, each

subtree corresponding to one fop-level goal.

IV PROCESSING THE REPRESENTATION
We have developed a general algorithm whose purpose is to compute
an appropriate action to take based on the trees of predicates and
actions, Once an action is determined and executed the trees are
searched again to find a new action. The search starts at the top
nodes, whose-urgencies are assumed known, and looks for the most urgent
enabled action. This is done by searéhing the nodes according to their
computed urgencies.
Before giving a detailed statement of the algorithm, we will sketch
its operation on subtree A of Figure 1:
(1) At node 1 compare the value and the urgency. If v(1l) = u(l)
then STOP. Else,
(2) Compute the successors of 1 by following the relevant arrows
backward out of 1, In this case the successors are 2 and 3.
(3) Look for the most urgent tip node (or open node). If
max[u(2),u(3)] is enabled, then execute the action associated
with it. For example, if u(2) > u(3) and v{2) (at door) is
true, then the appropriate action is 'open the door.' Note
that the arrow from node 3 to node 1 has no action on it.
If v(3) is true, then the person may open the door (with
probability = 0.5) and the robot need do nothing.
{4) If u(2) > u(3) and node 2 is not enabled (i.e., the robot

is not at the door), then continue the search below 2.

AHOML3IN JAILYHLISNTI L 34N9I4
1-LBLL-VS
100 ‘90
yied asanecwially
AQ JooQ ayl o1 09
1 E
37403d 40
Hy310 v HOQQ -
01 Hl1vd
00 ‘SL'0
100) M 09 @
1 d 1 4 1 E|
X08
HVaN v HOOO] v HO0Q -
NOSH3d 1Y NOSH3d 1v 10804
£0'0 90
ieg wosd @ ® ®
X0g aroW S0 °L0D 10 ‘80
jooQ ayl vadQ
1 4 1 E
»08 N3d0
oIni Svm | ® ¥ HOOQ
NOSH3d Iz =n —
=
8 33418ns @ ¥ 33H18NS. @

S1S1x3
¥ HOOQ o1
H1¥d JAILYNYHILTY

®

V THE BASIC ALGORITHM

The basic search algorithm selects the most urgent node in the
tree and takes appropriate action. For illustrative purposes, consider

the net fragment shown below, in which @ is the most urgent open node:

b, a
O—O—®
19 pP:a

4

p

For any open node, there are eight cases to consider. These eight
cases are based on the following three dichotomies:

(1) sgn[u(R)] = sgn[v(R)] or sgn[u(R)} # sgn[v(R)]. This tells
us whether we want to maintain the value of R of flip it.

If the signs are equal, then we want to maintain it; other-
wise we want to flip it.

(Z) p>qor p<gq. This tells whether an action should be done
to maintain R or to flip R. If p > q then R is more likely
to change if a is done. If we want to flip R we do a, and

"if we want to maintain R then we do not do a. Similarly, if
q > p we will do a to prevent the flip of R if that is
desired, and not do a if we want R to flip.

(3) Action a is disabled or enabled. If a is enabled we can do
it. If a is disabled we may try to change @ to enable it.

For each combination of these three situations the algorithm either

selects an action to take or continues searching the tree. Some examples
of cases are:

(1) sgn[u(R)] # sgn[r(R)]

P >a

a is enabled.

This is a common case of excitatory change, and unless there
is some reason to inhibit a (discussed below), we will

execute it.

(2)

(3)

(4

sgnlu(R)] # sgn[v(R)]

P>q

a is disabled.

We want to do a so0 we will try to enable it., To do this,
compute the relevant successors of Q, say S. We then try
to compute u(S) and in particular set sgn[u(S)] to the sign
of the tail of the arrow from S to @. This indicates that
we want v(S) to be such that b is enabled. Then when b is
done, Q should flip enabling a.

sgn u(R)] = sgniv(R)]

p>q

8 is enabled.

This is a case of either inhibitory maintenance because R
is as we want it now and we discover that doing a will
cause R to change. In this case, we put a on a ''candidate
inhibition list." Later, if we want to do action a for
some other reason, we can decide whether it is more urgent
té do a and change R or not to do a and maintain the current
value of R. The list is called a candidate list because
when we add the possibility of imperfect knowledge, we may
not know whether a is enabled, and it may be‘costly to find

out until we have a good reason for doing action a.

sgn [u(R)]= sgn [v(R)]

a>p

a is enabled.

This means that unless we do action a predicate R will change
value. Since R is as we want it, we will execute a to prevent
the change (subject to checking for any inhibitions on &).

This is the case of excitatory maintenance.

10

VI ELABORATIONS

There are a number of ways to complicate this model; in the follow-
ing we limit ourselves to discussing two possibilities. These two are

the "knowledge' problem and the probleém of learning.

Al Knowledge

It is quite unrealistic to assume that a robot at all times has.
perfect knowledge of his environment; it cannot and does not watch
everything at once. Instead, attention is focused on theose things
which are currently of interest, We intend to incorporate into our
moael a system whereby the robot will "forget' things or begin to
mistrust its memory, and thereby force it to look again to find the
current status of relevant stimuli. To do this we expect to have a
data base of the robot's current information about the state of the
world. These data may not reflect the true state of the world
reliably, but it is not unrealistic for a robot to‘have imperfect
knowledge. The nodes of the tree will be evaluated from the model.

The form of storage for the data base is still to be determined,
but we have severél possibilities. One requirement is that there should
be some concept of time in the world: What occurred after what? How
long ago did something change? How often does it change? All of these
are in various ways dependent on time. This suggests that we store
information in the form of a time line. Each observation about the
world and each action taken can be stored on this time line. We also
may use some idea of semantic stofage such as those studies by
Quillian, Becker, and others.

Another problem to be considered is that things can be forgotten
that were once known while remembered ''facts' may no longer be true.
For fhis reasoﬁ we may sometimes not trust our knowledge. A third
thing that affects our knowledge of the world is the actions that we
take, We may do something that we think or know éffects certain items.
After that action is taken we may not know the new state of the affected

items until we check them. (We really do not know whether the light

11

switch worked until we see the light go on or off. If the 1ight.is in
another room we may want to go see whether the light is on before we
claim it is.) Because of these imperfections in‘our knowledge we want
the nodes of the net to have analog truth values. These analog values
tend toward 0 as a fact becomes unknown and they tend toward *1 true or
false when we check for the current state of that fact,

To reflect in our net the possibility that we might have to take

an action to learn the value of a node, we have added knowledge acquisi-

tion arrows which point to the middle of the node. Wheneﬁer the predi-
cate in the node is at or near 0 the relevant arrow is the acquisition
arrow and it will be searched for the action to take to acquire the
knowledge desired. The effect of this action is to move the value of
the predicate off cen&er in either the false or true direction. The
same search rules stated before can easily be generalized to handle
this third type of arrow, The conditions for acquisition of knowledge
can be as elaborate as desired. For instance, it could be that in order
to know whether the light is on, one must go through several rooms to
see it. Depending on how urgent the information is, the importance of
doing the acgquisition can be determined. Initially, we will not make
knowledge acquisi%ion too complicated, but it will be possible to make

information-acquiring sequences quite elaborate,

B. Learning

The second major topic that we have begun to consider, and want to
study in much more detail, is the problem of learning. The first and
easiest things to learn are the probabilities (p and q) associated with
already established nodes. Variation of p and g can have great effects
on the actions taken because they help determine the order in which the
tree is searched. Establishing the reliability of p and q seems straight-
forward. We want to base these figures on the prior experiences stored
in the data base, and estimate the probabilities based on these 'memories.”
With proper weights on the past experiences it should be possible to show

changes in actions based on changing reinforcement schedules, and also

to show the extinction of actions based on discontinuing reinforcement.

12

A second more intefésting kind of learning is to invent new nodes
and arrows. In this case we will have known actions that can be taken,
some of which will produce desired results under the right conditions.

We have some ideas, admittedly sketchy, about how the linking of a new
node can happen. A possible approcach is that whenever there is some-
thing to be done, such as getting to a new room, and there is no known
way of achieving it, we can have some sort of random set of actions occur
until something changes. We hope that eventually either we will be in
the new room or else we will be in a state from which it is possible to
reach the new room. The last action that was done before the change

can then tentatively be linked with the changed node. Determining the
conditions under which this action worked is subtle, but a first guess
could be that the last thing or last few things that changed prior to

the actions were those that were needed. A link can be made, and the
next time the situation is encountered the action will be tried sooner
because of this link. If the action seems to work, ''reinforcement' will
cause the probabilities on the arrows to increaée. If the initial action
or conditions were wrong, then the next time this may not work and the
probabilities will be lowered and something else tried. In this fashion,

new chains of actions can be constructed.

13

